
Lean Software
Development:

Curt Hibbs
Boeing Defense, Space & SecurityDevelopment:

One Step at a
Time

Steve Jewett
Boeing Research & Technology
Systems & Software Technology

BOEING is a trademark of Boeing Management Company.
Copyright © 2008 Boeing. All rights reserved.

The statements contained herein are based on good faith assumptions and provided for general information purposes only.
These statements do not constitute an offer, promise, warranty or guarantee of performance Actual results may vary
depending on certain events or conditions. This document should not be used or relied upon for any purpose other than
that intended by Boeing. Everything in this document is publicly available.

y gy
Conference 2010

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Lean Software Development: One Step at a Time

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Boeing Defense, Space & Security,P. O. Box 516,St. Louis,MO,63166

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

84

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Agenda

Part 1 – Introduction to Lean Software Development
• The Problem with Software Development• The Problem with Software Development
− Research Statistics

• Lean & Agile Software
Principles− Principles

− Differences, Similarities

Part 2 The Core PracticesPart 2 – The Core Practices
• Universally Recommend Practices
− Common across all Lean & Agile methodologies

COPYRIGHT © 2008 THE BOEING COMPANY

Part 1Part 1

Introduction to
Lean Software DevelopmentLean Software Development

COPYRIGHT © 2008 THE BOEING COMPANY

The Problem

Have you ever…
• Gone over budget?• Gone over budget?

• Missed a deadline?

• Had your project cancelled?

• Delivered software that didn’t really meet the needs of the customer?

You’re not aloneYou re not alone

COPYRIGHT © 2008 THE BOEING COMPANY

Some Statistics

The CHAOS Study1

• The landmark study of software project failures• The landmark study of software project failures

• Multiple reports issued over a period of more than ten years

• Analyzed more than 40,000 projects

The original 1994 CHAOS report found
• Only 16% of software development projects were successfuly p p j

− Out of 8,000 projects studied

− 31% failed outright

53% h ll d (f il d t t h d l b d t)− 53% were challenged (failed to meet schedule or budget)

COPYRIGHT © 2008 THE BOEING COMPANY

1http://www.standishgroup.com/

CHAOS Study 60%

40%

50%

30%

10%

20%

0%

Succeeded 16% 27% 26% 28% 34% 29%

Challenged 53% 33% 46% 49% 51% 53%

Failed 31% 40% 28% 23% 15% 18%

1994 1996 1998 2000 2002 2004

Success rate is improving at the glacial pace of 1.3% a year (average)1

This is consistent with other (smaller) studies.
• For more details, see Craig Larman’s book Agile & Iterative Development,

COPYRIGHT © 2008 THE BOEING COMPANY

, g g p ,
Chapter 6: Evidence

[1] the CHAOS study is ongoing, having published additional reports
in 2006 and 2008. See http://www.standishgroup.com/

Why Aren’t the Successes Higher?

As with most things, no single reason, but…
A large part can be traced to the spread of theA large part can be traced to the spread of the
Waterfall method

Waterfall Method
• Has distinct phases• Has distinct phases
• Phases are sequential
• Handoffs to different teams
• Has an appealing air of simplicity• Has an appealing air of simplicity
• Project managers like the easily tracked

milestones

COPYRIGHT © 2008 THE BOEING COMPANY

Waterfall History

1970: Managing the Development of Large Software Systems by
Winston Royce
• Often cited as the paper that validates the Waterfall MethodOften cited as the paper that validates the Waterfall Method
• It does describe the Waterfall Method
• But concludes the Waterfall Method is risky and invites failure.
• It then advocates iterative development.

1982: DOD-STD-2167[1]

• Required Waterfall in software procurement

1987: Internally, DoD recommends iterative development
1994: MIL-STD-498[1]

• Says iterative development is preferred

Waterfall continues to be used, resulting in:
• Reduced productivity

COPYRIGHT © 2008 THE BOEING COMPANY

p y
• Increased defect rates
• Increased project failure

[1] DOD-STD-2167 and MIL-STD-498 are public.
See http://www.everyspec.com/DoD/DoD-STD/DOD-STD-2167A_8470/
and http://www.everyspec.com/MIL-STD/MIL-STD+(0300+-+0499)/MIL-
STD-498_10233/

Lean & Agile SW Development

Agile (and predecessors):
• Response to failures of WaterfallResponse to failures of Waterfall
• Called Lightweight methods in the 1990s,
• Agile term coined in 2001
• Focused specifically on Software DevelopmentFocused specifically on Software Development
Lean
• Began in Toyota manufacturing around 1950 as Just-In-Time
• “Lean” term coined in 1990• Lean term coined in 1990
• Originally focused on manufacturing
• In the 1990s Lean principles were applied to other areas:

Product Development Supply Chain Office− Product Development, Supply Chain, Office…
Lean Software Development
• Lean first applied to software development in 2003

Draws heavily on both Lean principles and the Agile experience

COPYRIGHT © 2008 THE BOEING COMPANY

• Draws heavily on both Lean principles and the Agile experience

Whirlwind History of Lean

1800s
Craft Production

1900s
Mass Production

1950
Lean Production

1990
Office, Supply Chain,
Engineering BankingEngineering, Banking…

2003
Lean Software

COPYRIGHT © 2008 THE BOEING COMPANY

Lean Software

Graphic used with permission from http://www.strategosinc.com/

Whirlwind History of Lean

Toyota Production SystemToyota Production System
• Taiichi Ohno described the Toyota Production System as a system

for the absolute elimination of waste.
• By the early 1990s Toyota was 60% more productive with 50% y y y % p %

fewer defects than its non-Lean competitors.

Elimination of Waste
• A major part of any form of Lean
• Waste is anything that does not add value in the eyes of the

customer.

We’ll say more on value and waste in just a bit…

COPYRIGHT © 2008 THE BOEING COMPANY

Lean Principles

Value
• understand what adds value for the customerunderstand what adds value for the customer
Value Stream
• understand how the organization generates customer value
FlowFlow
• maximize speed and minimize cost by achieving continuous flow
Pull

d li l j t i ti b i b d t l t• deliver value on a just-in-time basis based on actual customer
demand

Perfection
ti l i th f f l t• continuously improve the performance of your value streams

— Womack and Jones, Lean Thinking

COPYRIGHT © 2008 THE BOEING COMPANY

Agile Software Development

Manifesto for Agile Software Development
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiationCustomer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items onThat is, while there is value in the items on
the right, we value the items on the left more.

www.AgileManifesto.org

COPYRIGHT © 2008 THE BOEING COMPANY

There is significant overlap between Lean and Agile!

Lean & Agile

Individuals and
Interactions

Working Software
over

Customer
Collaboration

Responding to
Change

over processes
and tools

comprehensive
documentation

over contract
negotiation

g
over following a

plan

Specify value in
eyes of customer

Identify value
stream, eliminate
waste
Make value flow at
the pull of the
customer
Pull value based
on customer
demand
Continuously
improve in pursuit

COPYRIGHT © 2008 THE BOEING COMPANY

of perfection
— Boeing IT: Lean Training for IT Systems

Lean & Agile

Agile Software Development
• Primary focus isPrimary focus is
− Close customer collaboration
− Rapid delivery of working software as early as possible.

• Formal methodologies: XP (eXtreme Programming), Scrum, Crystal,Formal methodologies: XP (eXtreme Programming), Scrum, Crystal,
etc.

Lean Software Developmentea So t a e e e op e t
• Lean is not prescriptive, but analytical and open-ended
• The focus is on delivering value to the customer at a quicker pace

(primarily through the elimination of waste)(p y g)
• Lean has no formal methodologies
• Has a toolkit of recommended practices

COPYRIGHT © 2008 THE BOEING COMPANY

Value & Waste

Waste
• Waste is anything that does not add value in the eyes of the customer
• There can be multiple customers, each valuing different things

C t i f A ti itiCategories of Activities
• Value Added

(MUST meet ALL 3 criteria to be VA)
− The customer wants it (e.g., is willing to pay for it)

f f / f f ()− And, it changes the form, fit and/or function of the product or service (physical change)
− And, it’s done right the first time (no rework)

• Non-Value Added but Necessary
− Required by law, regulation or policy
− Causes no value creation, but cannot eliminate based on current technology or thinking

• Non-Value Added (Waste)
− Consumption of resources without adding any value in eyes of customer
− Pure waste

COPYRIGHT © 2008 THE BOEING COMPANY

− If an activity cannot be eliminated, it is NVAN

Types of Waste

L SW

A first step in implementing Lean
software development is learning to

Lean Manufacturing Lean SW
Development

Defects Defects

Over Production Extra Featuresidentify waste in many forms

The seven classic categories of waste
i f t i h di t l

Over Production Extra Features

Transportation Handoffs

Waiting Delays

in manufacturing have direct analogs
in software development.

Inventory Work in Progress

Motion Task Switching

Over Processing Unneeded Processes

Let’s go through these one at a time…

Over Processing Unneeded Processes

COPYRIGHT © 2008 THE BOEING COMPANY

Defects → Defects

Defects cause expensive reworkp
• Lean focus: preventing defects
• Defects are especially expensive when detected late
Lean response to a defect:Lean response to a defect:
• Find the root cause
• Ensure the defect cannot recur
In software this means:In software this means:
• automated tests
When a defect does slip through:

A t t i t d t d t t th t d f t• A new test is created to detect that defect
• It cannot pass through undetected again

COPYRIGHT © 2008 THE BOEING COMPANY

Over-Production → Extra Features

Every line of code costs money
Standish CHAOS Study:Standish CHAOS Study:
• 45% of features are never used
• Only 20% of features were used often or always
A 2001 study1:y
• 400 projects
• Over a 15 year period
• Less than 5% of the code was actually

f l d!useful or used!
This is a huge waste
• Increasing drain on resources over time

If a feature does not address a clear customer
need, then it should not be created

COPYRIGHT © 2008 THE BOEING COMPANY

1 “Improving Software Investments through Requirements Validation”
IEEE 26th Software Engineering Workshop

Transportation → Handoffs

Sound familiar? Classic Waterfall Process (worst case)
• Analysts create a document containing all of the product requirements andAnalysts create a document containing all of the product requirements and

hand them off to the architects
• Architects take the requirements and create the product design, which they

hand off to the programmers
• The programmers write the code to implement the design, and pass the

results to the testers
• The testers validate the resulting product against the requirements
K l d i l t i h h d ffKnowledge is lost in each handoff
• Architects won’t understand the requirements as deeply as the analysts
• Programmers will not understand the design as well as the architects
• This incomplete understanding will lead to errors and omissions, which will

require costly rework to correct

COPYRIGHT © 2008 THE BOEING COMPANY

Try to avoid handoffs whenever possible

Waiting → Delays

In development, decisions are made almost constantly
• Most of the time a developer will know (or can deduce) the answersMost of the time a developer will know (or can deduce) the answers
• But they can’t know everything, and sometimes must ask questions

When immediate answers are obtained
Th i d l• There is no delay

• Development continues at full speed

Having to wait only has wasteful possibilities
• Suspend the current task; move on to something else
• Try to find the answer; just guess the answer
− And even when the developer tries to find the answer if it’s just too muchAnd even when the developer tries to find the answer, if it s just too much

trouble, they’ll end up guessing just to save the hassle

Best organization: co-located, integrated teams
• Provides high bandwidth communications

COPYRIGHT © 2008 THE BOEING COMPANY

• Provides high bandwidth communications
• Minimizes delays

Inventory → Work in Progress

Work in Progress (WIP) is anything started but not finished
• Requirements (features) that haven’t been coded
• Code that hasn’t been tested, documented, and deployed
• Bugs that haven’t been fixed
Traditional approach
• Let WIP build up in queues to be completed later
• End result: Incomplete features and deferred bugs accumulate
Lean approach
• Use single-piece flow to take a feature through to deployment as rapidly as

possible
E d lt l t d b f f t d• End result: more completed, bug free features ready sooner

A feature is not done until it is potentially deployable
• This means fully documented, tested, and error-free

“P t ti ll ” b th t i t t ll t l d l t

COPYRIGHT © 2008 THE BOEING COMPANY

• “Potentially” because other constraints may not allow actual deployment as
often as we would like

Motion → Task Switching

Task switching (and interruptions) kill productivityg (p) p y
• Focus on the task at hand

− Mental ramp up takes time
− After ramp-up, problem solving flowsAfter ramp up, problem solving flows

• Interruptions
− Must restart mental ramp up

• Task switching (a much longer interruption)• Task switching (a much longer interruption)
− Must “relearn” where you were
− Much longer mental ramp up

Lean advocates single-piece flow
• Productive because you can work completely through a feature or task

without the waste of task switching

COPYRIGHT © 2008 THE BOEING COMPANY

without the waste of task switching

Over Processing → Unneeded Processes

Unneeded processes are pure wastep p
• They reduce productivity without adding any value

Includes things like:Includes things like:
• Procedures that accomplish no purpose

• Documents that no one reads

• Manual tasks that should be automated

• Procedures that make simple tasks hard

COPYRIGHT © 2008 THE BOEING COMPANY

Value or Waste?

Which of the following deliverables and activities add value, and which represent waste?

Working Software
Documentation

System Design

Independent Systems

y g

Defects
Measurements

Low Priority Features

Software in Development

Redundant Systems

Waiting

Document Review & Signoff

Detailed Planning
Standards

Multitasking

COPYRIGHT © 2008 THE BOEING COMPANY

Regulatory Compliance

— Boeing IT: Lean Training for IT Systems

Working Software: Value or Waste?

Working Software
Documentation

System Design

Independent Systems

y g

Defects
Measurements

Low Priority Features

Software in Development

Redundant Systems

Waiting

Document Review & Signoff

Detailed Planning
Standards

Multitasking

COPYRIGHT © 2008 THE BOEING COMPANY

Regulatory Compliance

— Boeing IT: Lean Training for IT Systems

Working Software: Value or Waste?

Answer: It Depends

Features that are actually used represent value.
Features that are not used, are waste.

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Measurements: Value or Waste?

Working Software
Documentation

System Design

Independent Systems

y g

Defects
Measurements

Low Priority Features

Software in Development

Redundant Systems

Waiting

Document Review & Signoff

Detailed Planning
Standards

Multitasking

COPYRIGHT © 2008 THE BOEING COMPANY

Regulatory Compliance

— Boeing IT: Lean Training for IT Systems

Measurements: Value or Waste?

Answer: It Depends

Informational measures
can be essential to:

bl l i• problem-solving
• process improvement
Motivational measures
• use performance measures as part of a rewards system
• cause waste
The difference is not in the measure, but in how it is used
• makes it difficult to implement purely informational measures

Measurements that are collected but not used for decision-making are
also wasteful

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

also wasteful.

Documentation: Value or Waste?

Working Software
Documentation

System Design

Independent Systems

y g

Defects
Measurements

Low Priority Features

Software in Development

Redundant Systems

Waiting

Document Review & Signoff

Detailed Planning
Standards

Multitasking

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Regulatory Compliance

Documentation: Value or Waste?

Answer: It Dependsp

Documentation can be very wasteful.
• Too long or dense to readg
• Not kept up-to-date
− Its production was waste
− Misunderstandings based on it may cause defects. g y

• Too vague, imprecise or poorly written to offer any value.
• Can’t find it when needed, then it is not adding value.

But, concise, well-written documentation can be valuable
• especially for audiences that are separated by distance or by time.

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Defects: Value or Waste?

Working Software
Documentation

System Design

Independent Systems

y g

Defects
Measurements

Low Priority Features

Software in Development

Redundant Systems

Waiting

Document Review & Signoff

Detailed Planning
Standards

Multitasking

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Regulatory Compliance

Defects: Value or Waste?

Answer: Waste

Defects cause expensive rework or outright scrap.
Minimize defect waste
• Identify and correct them quickly
• Automated tests prevent defects from reoccurring without detection

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Regulatory Compliance: Value or Waste?

Working Software
Documentation

System Design

Independent Systems

y g

Defects
Measurements

Low Priority Features

Software in Development

Redundant Systems

Waiting

Document Review & Signoff

Detailed Planning
Standards

Multitasking

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Regulatory Compliance

Regulatory Compliance: Value or Waste?

Answer: Non-Value Added but Necessaryy

Compliance allows you to stay in business
• Sarbanes-Oxleyy
• ITAR/EAR
• Compliance is a prerequisite for delivering value to our customers

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Multi-tasking: Value or Waste?

Working Software
Documentation

System Design

Independent Systems

y g

Defects
Measurements

Low Priority Features

Software in Development

Redundant Systems

Waiting

Document Review & Signoff

Detailed Planning
Standards

Multitasking

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Regulatory Compliance

Multi-tasking: Value or Waste?

Answer: Waste

Workers juggling multiple assignments
• Spend more time on task switchingp g
• Waste time reorienting themselves from one task to another
As workloads go up, work accomplished goes down
Overloaded employees make more mistakes and are less productive. p y p

COPYRIGHT © 2008 THE BOEING COMPANY

— Boeing IT: Lean Training for IT Systems

Lean Software Development Principles

Mary and Tom Poppendieck
• Derived Lean software development principles from Lean Product• Derived Lean software development principles from Lean Product

Development
• According to the Poppendiecks:

“Principles are underlying truths that don't change over time or space, while practices p y g g p , p
are the application of principles to a particular situation. Practices can and should
differ as you move from one environment to the next, and they also change as a
situation evolves.” [1]

Poppendieck Lean Software Development Principles[1]:
• Principle 1 - Eliminate Waste
• Principle 2 - Build Quality In
• Principle 3 - Create Knowledge
• Principle 4 - Defer Commitment
• Principle 5 - Deliver Fast

P i i l 6 R t P l

COPYRIGHT © 2008 THE BOEING COMPANY

• Principle 6 - Respect People
• Principle 7 - Optimize the Whole

[1] from the book “Implementing Lean Software Development: From
Concept to Cash” by Mary and Tom Poppendieck

Principle 1: Eliminate Waste

We’ve already covered this topic in excruciating detail, so let’s
move on…

COPYRIGHT © 2008 THE BOEING COMPANY

Principle 2: Build Quality In

Key insight from Lean manufacturing:
• You cannot inspect quality into a product at the end of a production line
• This detects problems but does nothing to correct them
• Each process step should be mistake-proof and self-inspecting

Traditional vs. Lean software development approach
• Traditional approach: Let defects slip through and get caught later by testing
• Lean approach: Mistake-proof your code by writing tests as you code theLean approach: Mistake proof your code by writing tests as you code the

features

Tests prevent subsequent changes to the code
from introducing undetected defects

COPYRIGHT © 2008 THE BOEING COMPANY

Principle 3: Create Knowledge

Retrospectionp
• There is a learning curve where we build on our experience and lessons

learned

• One technique for doing this is a retrospective where we review our• One technique for doing this is a retrospective where we review our
processes at the end of each iteration

• This way, poor performance or waste can be identified and mitigated prior to
the next iterationthe next iteration

Repeating mistakes and relearning is waste

You shouldn’t have to relearn
what you already know

COPYRIGHT © 2008 THE BOEING COMPANY

Principle 4: Defer Commitment

The best decisions are made when the most information is
available
• Not too soon…
− Before all possible helpful information is availableBefore all possible helpful information is available

• Not too late…
− Don’t want to delay downstream work
J st right• Just right…
− At last responsible moment

Wait until the last responsible moment to make
an irreversible decision

(don’t use this as an excuse to avoid planning)

COPYRIGHT © 2008 THE BOEING COMPANY

Principle 5: Deliver Fast

Software is abstract
• When we can see it, its easier to think about it
• We work best with concrete things

Software requirements are volatile
Waterfall approach: wait until the end to get feedback• Waterfall approach: wait until the end to get feedback

• This is too late, prone to failure

Deliver fast meansDeliver fast means
• Developing features in small batches using short iterations
• The customer can use these (now concrete) features
• The customer can change and reprioritize the requirements based on real use

Delivering fast results in:
• A product that more closely meets the real customer needs

COPYRIGHT © 2008 THE BOEING COMPANY

• A product that more closely meets the real customer needs
• Reduces the waste and rework created by requirements churn

Principle 6: Respect People

This lofty altruism is also the down-home truth:y

“Engaged, thinking people provide the most sustainable competitive advantage.” 1

R f lRespect for people means
• Trusting them to know the best way to do their jobs
• Engaging them to expose flaws in the current process
• Encouraging them to find ways to improve their job and its surrounding

processes
• Recognizing them for their accomplishments and actively soliciting their

adviceadvice

Don’t waste your most valuable resource:
the minds of your team members!

COPYRIGHT © 2008 THE BOEING COMPANY

the minds of your team members!

[1] from the book “Implementing Lean Software Development: From
Concept to Cash” by Mary and Tom Poppendieck

Principle 7: Optimize the Whole

A system is not a collection of collaborative parts - it is the product y p p
of these collaborative interactions
• Having all the best parts will not necessarily result in the best system

Any time you optimize a local process you are almost always doing
so at the expense of the whole value stream
• This is sub-optimizing

If you don’t have control over the entire value stream
• You may be forced to sub-optimize a piece of it

Always include as much of the value stream as
possible when you optimize a process

COPYRIGHT © 2008 THE BOEING COMPANY

p y p p

Supporting Evidence

Solid data supporting Lean-Agile software development are
increasingly availableg y
Report from the Cutter Consortium1

• 7,500 completed projects

• 500 companies (in 18 countries)

• 20 of the projects were Agile

Results: Agile projects (as compared with traditional)Results: Agile projects (as compared with traditional)
• Delivered faster

− Or delivered more functionality

f f• Delivered fewer defects

• Had significantly reduced costs

• See the report for specific numbers

COPYRIGHT © 2008 THE BOEING COMPANY

[1] How Agile Projects Measure Up, and What This Means to You, 2008,
by Michael Mah, Cutter Consortium.

Part 2Part 2

The Core Practices

COPYRIGHT © 2008 THE BOEING COMPANY

Core Lean Software Development Practices

Several core practices are common to both Lean

Practice 1: Automated Testing

software development and Agile methodologies

Practice 1: Automated Testing

Practice 2: Continuous Integration Agile development is
all about priorities, so
we’ve listed these in

Practice 3: Less Code

Practice 4: Short Iterations

the order we believe
brings the highest
return on investment

Practice 5: Customer Participation

COPYRIGHT © 2008 THE BOEING COMPANY

Practice 0: Prerequisites

Basic Software Development Best PracticesBasic Software Development Best Practices
• These practices apply to all software development efforts, regardless of the

methodologies in use. If you’re not doing these, start now.

Prerequisites for any viable software development process, but
particularly for Lean software development.
• Implementing Lean or Agile processes without these practices in place is like

trying to run before you learn to walk.

Many such practices exist, but two are applicable here:
• Source Code Management• Source Code Management
• Scripted Builds

COPYRIGHT © 2008 THE BOEING COMPANY

Source Code Management and Scripted Builds Prerequisites

Source Code Management (SCM)Source Code Management (SCM)
• Place ALL items required to build a product from scratch in an SCM

repository (e.g. Subversion, ClearCase), including build scripts, test code,
database/XML schemas and initialization, etc.,

Pragmatic Programmer Tip 23:
“Always Use Source Code Control” 1Always Use Source Code Control

Scripted Builds
W it b ild i t t t th d t f t h b t i i ll• Write a build script to create the product from scratch by retrieving all
necessary items from SCM and performing all build actions.

• Practice 2 (Continuous Integration) makes extensive use of build scripts.

Pragmatic Programmer Tip 61:
“Don’t Use Manual Procedures” 1

COPYRIGHT © 2008 THE BOEING COMPANY

1 “The Pragmatic Programmer”; A.Hunt, D.Thomas; Addison-Wesley; 2000

Practice 1: Automated Testing

Automated Testing is the use of test scriptsAutomated Testing is the use of test scripts
and programmable test frameworks to

execute tests without user intervention.

Automated Testing supports Lean development principles:Automated Testing supports Lean development principles:

• Principle 1: Eliminate Waste
− When defects are found, adding an automated test will prevent it from

irecurring

• Principle 7: Build Quality In
− Testing shouldn’t find defects, it should prevent them from occurring in the

COPYRIGHT © 2008 THE BOEING COMPANY

first place

Types of Testing Automated Testing

U it T tiUnit Testing Tests interaction between code units

Integration Testing

Tests small code units individually

User/Acceptance Testing

Tests ability to handle expected usage

COPYRIGHT © 2008 THE BOEING COMPANY

Load/Performance
Testing

Tests functionality at the user level

Unit Testing vs. Integration Testing Automated Testing

Unit Testing

Test
Framework

Unit Testing

Invoke Public
Methods

Module A

Evaluate
Response

(Component
Under Test)

Integration Testing

Test
Framework

Module A

Module C

Module B

COPYRIGHT © 2008 THE BOEING COMPANY

Database

Automated Testing as a Methodology Automated Testing

Automated tests are a cornerstone of several test-oriented development
techniques:

• Test Driven Development (TDD)• Test Driven Development (TDD)
− All application code is written along with a set of automated tests.
− This may include any combination of unit tests, integration tests, or

acceptance tests (unit tests are the most common)acceptance tests (unit tests are the most common).

• Test First Development (TFD)
− This is a variant of TDD where the tests are always written before the

application code.

• Behavior Driven Development (BDD)
An extension or evolution of TDD where tests are written from the point of− An extension or evolution of TDD where tests are written from the point of
view of the application’s behavior.

− Sometimes BDD includes writing the application’s requirements as a set of
behavior-style acceptance tests.

COPYRIGHT © 2008 THE BOEING COMPANY

be a o sty e accepta ce tests

Benefits of Automated Testing Automated Testing

COPYRIGHT © 2008 THE BOEING COMPANY

Automated
Testing

Controlled Execution
Well-known inputs and outputs
in a well-defined environment

Repeatability
Regression testing allows
quick identification of changes

Builds Quality In
Early testing ensures defects do
not escape

Improves Design
Highlights shortcomings in design
and implementation

Eliminates Waste
Prevents defect propagation which
reduces repetitive debugging

Safety Net

Documentation
Explains how the code works
via its response to test cases

Relieves hesitancy to modify
working code

Implementing Automated Testing Automated Testing

Unit Testing

1. Identify appropriate unit test
framework

g

2. Require unit tests for all new code

3. Retrofit unit tests to legacy code
Unit Tests

for
Existing

Test

g
Code

I t ti T ti Framework

Code
Module

Integration Testing

1. Use units test as basis for
integration tests

Mock
Object Mock

g

2. Replace mock objects with
real components

COPYRIGHT © 2008 THE BOEING COMPANY

Object Mock
Object3. Script scenarios as test

sequences

Executing Automated Tests Automated Testing

SCMSCM

Update

Automated
Build

Code

Automated
Tests

Integration
Tests

Unit
Tests
Unit

Tests

Report

Unit
Tests

Report

COPYRIGHT © 2008 THE BOEING COMPANY

Practice 2: Continuous Integration

Continuous Integration is the frequent integrationContinuous Integration is the frequent integration
of small changes during implementation.

SCM
Automated

Build
Update
Code

Automated
Tests

COPYRIGHT © 2008 THE BOEING COMPANY

Report

Continuous Integration Prerequisites Continuous Integration

Practice 0: Scripted Builds
Dedicated

Build

SCM

Build
Server

Update
Code

Automated
Build Continuous

Integration
ApplicationCode

Automated
Tests

Report

COPYRIGHT © 2008 THE BOEING COMPANY

Practice 1: Unit Testing
Framework & Test Suite

Benefits of Continuous Integration Continuous Integration

Module A

Integration

Minimize Propagation
of Errors

Acceptance
TestEliminate/Reduce Separate

Integration Phase

Limits Scope of Errors
During Debuggingu g ebugg g

Timely Feedback on
System-Wide Effects

COPYRIGHT © 2008 THE BOEING COMPANY

The Continuous Integration Process Continuous Integration

COPYRIGHT © 2008 THE BOEING COMPANY

Automated
Build

Standards &
Best Practices

Inspection

Code
Coverage
Analysis

Report

Unit
Tests

Performance &
Load Tests

Documentation

Integration
Tests

Acceptance
Tests

Database
Modification

& Initialization

Deployment
Package

Practice 3: Less Code

Less Code ≠ Less SoftwareLess Code ≠ Less Software
“Less Code” is a concept that drives development of all required
functionality while minimizing code base size.y g

The “Less Code” concept is realized in two ways:

• Eliminating unused and unnecessary code
• Writing smarter, more efficient code

While “Less Code” is more of a concept than a practice, several specific
techniques exist to eliminate unneeded code and make the code that istechniques exist to eliminate unneeded code and make the code that is
needed more efficient.

COPYRIGHT © 2008 THE BOEING COMPANY

What’s Wrong with a Big Code Base? Less Code

More Code Takes More Time
More Code

More Code Requires
More Integration

More Code
Drives Higher
Maintenance

Costs
More Integration

More Code Generates
More Bugs For Unused or Unneeded

Code, This is Non-Valued
Add d W k i W t

COPYRIGHT © 2008 THE BOEING COMPANY

Added Work, i.e. Waste

It’s Not Just About Implementation Less Code

Design Implementation

X
X X

Test

X
Test

XXX
Requirements

XXX

COPYRIGHT © 2008 THE BOEING COMPANY

Code Base

Reducing Code Base Size

Eliminate Unnecessary Code

Less Code

Eliminate Unnecessary Code

Diet

Employ Good Coding Practices

COPYRIGHT © 2008 THE BOEING COMPANY

Exercise

80%

Functionality

Eliminate Unnecessary Code by Prioritizing Requirements Less Code

80%Product Backlog

1 “80/20” Rule

Product Backlog

1

Product Backlog

1 Develop highest
priority requirements

Develop only for the p y
current iteration

X

COPYRIGHT © 2008 THE BOEING COMPANY

100100100

“Things should be as simple as possible but no simpler ”Bi D i U F tY A G N I

Balancing Planning and Agility Less Code

Things should be as simple as possible, but no simpler.
- Albert EinsteinBig Design Up FrontYa Ain’t Gonna Need It

COPYRIGHT © 2008 THE BOEING COMPANY

Employ Good Coding Practices Less Code

Best
Practices Refactoring Design

PatternsPractices g Patterns

COPYRIGHT © 2008 THE BOEING COMPANY

Practice 4: Short Iterations

“Short Iterations” is the use of short“Short Iterations” is the use of short
development cycles in iterative development.

Short iterations deliver functional software to the user at specific intervals,
allowing the customer to evaluate the product and provide feedback.

Short iterations support Lean development principles:Short iterations support Lean development principles:

• Principle 1: Eliminate Waste
− Short iterations reduce delays, one of “The 7 Wastes”.

• Principle 5: Deliver Fast
− Short iterations put new functionality in the customers hands quickly and

frequently.

COPYRIGHT © 2008 THE BOEING COMPANY

Increasing Feedback Opportunities Short Iterations

Single Iteration

0 Feedback Opportunities

2 Iterations
Final Delivery

2 Iterations

1 Feedback Opportunity
Monthly Iterations

Final Delivery

11 Feedback Opportunities Final DeliveryFinal Delivery

COPYRIGHT © 2008 THE BOEING COMPANY

Course Corrections Short Iterations

Feedback opportunities become chances to correctFeedback opportunities become chances to correct
the direction in which development is heading.

Course corrections allow developers to adjust
focus as the goal becomes more clear.

I

Course corrections allow developers to adjust
when the goal moves.

Iteration 4
Ite

rat
ion

 2Course corrections help ensure
the right product is built.

Iteration 1

COPYRIGHT © 2008 THE BOEING COMPANY

Iterative Development the Wrong Way Short Iterations

The Wrong WayThe Wrong Way

1. Treat iterative development as
a series of short waterfalls.

Prioritized
Requirements

2. Assign all requirements
to iterations at the start
of development.

1 Changing requirements during an iteration

The Problems

1. Changing requirements during an iteration
causes the replanning (waste) of subsequent
iterations.

2 Failure to adjust to changes results in building the wrong product

COPYRIGHT © 2008 THE BOEING COMPANY

2. Failure to adjust to changes results in building the wrong product.

Iterative Development the Right Way Short Iterations

The Right Wayg y
1. Prioritize requirements based on customer value.
2. Plan only the next iteration.
3 Re evaluate requirements prior to each iterationPrioritized

Requirements
Prioritized

Requirements
Prioritized

Requirements
Prioritized

Requirements
3. Re-evaluate requirements prior to each iteration.

D i
Req

D i
Req

D i
Req

D i
Req

Impl
Test

Design

Impl
Test

Design

Impl
Test

Design

Impl
Test

Design

1. Each iteration implements requirements most important to the customer.
2 Requirements changes are accounted for in each iteration

The Benefits

COPYRIGHT © 2008 THE BOEING COMPANY

2. Requirements changes are accounted for in each iteration.
3. The RIGHT product is built.

Keys to Implementing Short Iterations Short Iterations

Set the Iteration LengthSet the Iteration Length
and Stick to It

Work to Prioritized
Requirements

Demo to the
Customer

“Deliver” the
Product

COPYRIGHT © 2008 THE BOEING COMPANY

Customer Product

Practice 5: Customer Participation

Customer participation is about engaging theCustomer participation is about engaging the
customer in every aspect of development.

Customer participation is a cornerstone of both Lean development and
Agile methodologies:

• Lean Concept
− Specify value in the eyes of the customer.

• Agile Manifesto
− Value customer collaboration over contract negotiation.

COPYRIGHT © 2008 THE BOEING COMPANY

Customer Input is Essential to Success Customer Participation

XM

C
/C

+

Developers know
technologies and

software development

S
M

L/XSLT

++/C
#

H
T

software development,
but that’s not enough.

SQ
L

Java

U
M

L

TM
L

a L
Customers know theCustomers know the

business and the
problems that need

to be solved.

COPYRIGHT © 2008 THE BOEING COMPANY

Enabling Customer Participation Customer Participation

Provide Access to Requirements

Provide Project Status

Build Status

COPYRIGHT © 2008 THE BOEING COMPANY

Enabling Customer Participation Customer Participation

Provide Access to the Product

Provide a Feedback Loop

Formal
Defect Tracking

Informal
Online Collaboration Tools, Wikis

COPYRIGHT © 2008 THE BOEING COMPANY

Enhancement Requests Face-to-Face Meetings

Practices Summary Customer Participation

Practice 0: Source Code Management and Automated BuildsPractice 0: Source Code Management and Automated Builds
Use best practices for Lean Software Development.

Practice 1: Automated Testing
Implement reliable, repeatable test procedures.

Build

SCM
Update

R t

Build

T t

p
Code

Practice 2: Continuous Integration

COPYRIGHT © 2008 THE BOEING COMPANY

Report TestIntegrate small changes frequently.

Practices Summary Customer Participation

Practice 3: Less Code
Developing unneeded code is wasteful.

Practice 4: Short Iterations
Deliver fast and often to increase customer feedback.

Practice 5: Customer Participation
Engaging the customer may be the most

COPYRIGHT © 2008 THE BOEING COMPANY

important practice of all.

Resources: Books

Implementing Lean Software Development:
From Concept to Cash

by Mary Poppendieck; Tom Poppendieckby Mary Poppendieck; Tom Poppendieck

Agile and Iterative Development: A Manager's Guide

by Craig Larman

COPYRIGHT © 2008 THE BOEING COMPANY

Resources: Books

Continuous Integration:
Improving Software Quality and Reducing Risk

by Paul M. Duvall, Andrew Glover, Steve Matyas

xUnit Test Patterns:
Refactoring Test Code

by Gerard Mesaros

COPYRIGHT © 2008 THE BOEING COMPANY

Resources: Books

Working Effectively with Legacy Code

by Michael Feathers

The Art of Lean Software Development:
A Practical and Incremental Approach

by Curt Hibbs, Steve Jewett and Mike Sullivan

COPYRIGHT © 2008 THE BOEING COMPANY

FinisFinis

COPYRIGHT © 2008 THE BOEING COMPANY

